top of page
Figure 1-chiral polymer materials-2.jpg
Project 3-hydrogel-pic.jpg


1. Precision Polymer Synthesis

      Precisely controlled macromolecules: sustainable synthesis and advanced applications

This project aims to synthesise polymers that have precise chemical structure and mimic the biological activities of natural biopolymers like peptides and proteins. Monomer sequence and stereochemistry regulation in these natural biopolymers is important in biology and necessary for crucial features of life, such as molecular recognition, self-replication and catalysis. Current artificial techniques for biopolymer synthesis are time consuming and present low yields at high costs. This project expects its new materials will increase manufacturing sustainability, chemical diversity and industrial viability; produce health benefits for Australia by improving chemotherapy and diagnosis for diseases; and benefit the Australian economy.

2. Green Polymer Processes

    Green chemistry and processes for renewable polymer manufacturing

Bio-based polymers are attractive materials to address current global sustainability and to reduce the dependent of modern civilization on petrochemical industry. At present, most of the commercial monomers for industrial polymer manufacturing are petrochemical products which extremely rely on the unsustainable fossil fuel. Development of renewable monomers and their polymers is a high demand objective. This project aims to explore innovative green and sustainable technologies for transforming renewable biomass and abundant feedstocks from natural plants into high valued polymer materials. Meanwhile, this project also aims to harvest solar light by chemical means and utilize photo-energy as energy input for chemical reactions and renewable polymer manufacturing.

3. Polymer Hydrogels

    Polymer hydrogel-based soft electronic devices

Flexible and soft electronic devices have great potentials for various applications in bioelectronic skins, electrochemical supercapacitors, artificial intelligence systems, and human health monitoring. Considerable efforts have been recently devoted to fabricating electrically conductive hydrogels as advanced sensor devices due to their outstanding flexibility, stretchability and self-healing properties. Hydrogels are generally highly absorbent polymer networks that can accommodate large amount of water (more than 90%). With the availability of a broad range of environmentally benign natural or synthetic polymer materials for making the hydrogel networks, hydrogel-based sensor devices offer good biocompatibility for human skins.

bottom of page